Cultural Percussionist

The Cosmos with NGC 6543

The alluring Cat’s Eye nebula, however, lies three thousand light-years from Earth across interstellar space. A classic planetary nebula, the Cat’s Eye (NGC 6543) represents a final, brief yet glorious phase in the life of a sun-like star. This nebula‘s dying central star may have produced the simple, outer pattern of dusty concentric shells by shrugging off outer layers in a series of regular convulsions. But the formation of the beautiful, more complex inner structures is not well understood. Seen so clearly in this digitally sharpened Hubble Space Telescope image, the truly cosmic eye is over half a light-year across. Of course, gazing into this Cat’s Eye, astronomers may well be seeing the fate of our sun, destined to enter its own planetary nebula phase of evolution … in about 5 billion years.

The full beauty of the Cat’s Eye Nebula (NGC 6543) is revealed in this new, detailed view from NASA’s Hubble Space Telescope. The image from Hubble’s Advanced Camera for Surveys (ACS) shows a bull’s eye pattern of eleven or even more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky – that’s why it appears bright along its outer edge.

Observations suggest the star ejected its mass in a series of pulses at 1,500-year intervals. These convulsions created dust shells, each of which contain as much mass as all of the planets in our solar system combined (still only one percent of the Sun’s mass). These concentric shells make a layered, onion-skin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each skin layer is discernible.

The bull’s-eye patterns seen around planetary nebulae come as a surprise to astronomers because they had no expectation that episodes of mass loss at the end of stellar lives would repeat every 1,500 years. Several explanations have been proposed, including cycles of magnetic activity somewhat similar to our own Sun’s sunspot cycle, the action of companion stars orbiting around the dying star, and stellar pulsations. Another school of thought is that the material is ejected smoothly from the star, and the rings are created later on due to formation of waves in the outflowing material.

 

Share this post

Leave a Comment